《工业水处理》|无磷水处理方案在炼油循环水系统的应用
循环水系统使用的化学药剂以磷系药剂方案为主。随着对含磷污水环境危害认识的不断加深,近年来国家对相关行业的要求日益严格。《石油炼制工业污染物排放标准》(GB31570—2015)规定自2015年7月1日起,所有新建企业直接排放污水的磷<1 mg/L(以P计),对于需采取特别保护措施的地区,污水中磷的直接排放标准应<0.5 mg/L(以P计)。
循环水系统由高磷、低磷直至无磷水处理的研究和应用逐渐成为趋势,但循环水处理的各环节仍存在诸多瓶颈,亟待通过研发新技术、新工艺及新的药剂方案进行解决。
安阳市大禹水处理有限责任公司,位于甲骨文故乡,古都安阳,地处晋、冀、鲁、豫四省交界。京广铁路、京珠高速、107国道贯穿其间,地理位置优越,交通条件十分便利。
我公司拥有现代化的水处理剂生产线,是豫北地区水处理剂专业生产厂家。我公司经过多年研究,开发出多种水质稳定剂和杀菌灭藻剂,主要产品有聚羧酸系列、有机磷系列、复合剂系列、清洗剂系列、杀菌灭藻剂系列、絮凝剂系列等。可广泛用于化工、化肥、冶金、炼油、焦化、电力、食品、纺织、宾馆空调等行业的循环冷却水系统和油田输油、输水管线的阻垢缓蚀。
公司的发展壮大依靠的是信誉优、客户为上的理念;依靠的是务实的管理体系、超前的服务意识;依靠的是雄厚的科研力量、团结的营销队伍;依靠的是优 质的生产设备,先进的制配工艺。从而使公司在工业水处理的道路上快速前进,稳步发展。
服务项目:为用户设计水处理方案;为用户提供加药方法;为用户提供水质分析及药品检验方法;为用户提供化学清洗方案.
公司坚守“诚信经营、不断创新、、服务社会”的宗旨,期待着与各界同仁的精诚合作和共同发展。
1
系统概况
该循环水场设计供水能力3万 m3/h,保有水量16130 m3,主要为常减压、制氢、催化、渣油、蜡油、柴油、汽油加氢、硫化回收、芳烃联合、MTBE等装置提供循环冷却水,区域内低流速换热器占比30%,部分高温介质换热设备(95~115 ℃),换热器材料以碳钢为主,少量不锈钢和铜材换热器。
循环水场补充用水由生产用水和回用水构成,补水水质见表 1。其中生产用水取自湔江(牌坊沟水库)和人民渠,经净水处理后可满足《石油化工给水排水水质标准》(SH 3099—2000)中的生产给水水质要求。
表 1 补充水水质
40 ℃时,混合补水的Langelier饱和指数(L.S.I)为0.44,呈轻微结垢趋势。随着循环水浓缩倍数的提高,钙硬度、总碱度和pH逐渐提高,水质逐渐转变为强结垢趋势。
2
无磷水处理方案
现代循环冷却水处理方案趋向于控制循环水系统水质处于结垢状态,以便控制循环水系统的腐蚀和结垢问题。
当循环水的L.S.I控制在2.0左右时,循环水处于结垢状态,此时腐蚀倾向降低,水处理方案控制腐蚀和结垢都比较容易。无磷水处理方案控制结垢的效果更优,配合控制循环水中适当的碱度和pH,能达到良好的腐蚀控制效果。
基于炼油循环水系统可能存在碳氢化合物泄漏的特点,连续投加氧化性杀菌剂次氯酸钠,与生物分散剂结合使用,定期投加广谱高效的非氧化性杀菌剂是当前炼油循环水系统最有效的菌藻控制方法。
根据循环水场的补充水水质及系统特点,经小试和中试验证,并结合其他类似水质及系统的经验,确定该循环水场的无磷水处理方案。正常运行时浓缩倍数控制在4~5倍,具体选用方案及功能见表2。
其中BULAB9420DDS为示踪型无磷复合阻垢剂,主要含有丙烯酸、马来酸、磺酸盐类多元共聚物;BULAB9050为锌盐无磷缓蚀剂;BULAB9027为唑类铜缓蚀剂;BULAB8012为脂肪酸酰胺类为主复配的有机分散剂;BULAB6158为异噻唑啉酮类和有机溴复合型非氧化性杀菌剂。
表 2 无磷水处理方案
3
结果与讨论
3.1节水效果
回用水一直是该循环水场重要的补充用水来源。近3年循环水场的回用水用量占系统补充水量的30%~40%,平均每年可节约新鲜用水约71万m3。
3.2浓缩倍数控制
日常运行时综合考虑安全运行和节水效果,将该循环水场的正常浓缩倍数维持控制在4~5倍。提高浓缩倍数是循环冷却水系统的节水关键,对节约用水及药剂、降低处理成本有很大的经济效果,如循环水系统浓缩倍数从3倍提高到5倍,节水效果能提高0.4%。
在实际运行中,由于该循环水场属于炼油循环水系统,受区域内换热器工艺介质泄漏后排污置换应急处置的影响,其系统浓缩倍数低于正常控制范围(见图 1)。工艺介质泄漏为水中微生物的繁殖提供大量营养源,低浓缩倍数下水质腐蚀趋势增强,均是无磷水处理方案运行时面临的难题和挑战。
图 1 以钙硬度计算的系统浓缩倍数
3.3腐蚀和结垢控制效果
根据循环水场的水质及系统特点,日常运行中控制循环水Langelier饱和指数L.S.I处于结垢趋势(见图 2),通过无磷水处理方案的缓蚀、阻垢、分散性能,达到良好的控制系统腐蚀和结垢要求。
图 2 循环水系统L.S.I指数变化趋势
循环水中的总铁质量浓度变化趋势见图 3。
图 3 循环水中总铁质量浓度变化曲线
一般认为,循环水中存在2.0 mg/L Fe2+时,碳钢换热器的年腐蚀速率会增加6~7倍,且局部腐蚀加剧,同时铁离子含量高会给铁细菌的繁殖创造有利条件,总铁浓度过高表明系统腐蚀速率偏高。该系统总铁质量浓度控制在<1.0 mg/L,表明其腐蚀控制在合理范围。
对换热器的腐蚀挂片和试管进行监测,结果如表 3所示。可见碳钢、不锈钢、黄铜材质的腐蚀速率分别满足<0.075、0.005、0.005 mm/a的要求,系统腐蚀控制良好。
表 3 监测挂片和试管的腐蚀速率(2020年数据)
监测换热器换热管水侧的黏附速率,结果见表 4。
表 4 黏附速率(2020年数据)
由表 4可见,其黏附速率满足GB/T 50050— 2017中炼油行业不应>20 mg/(cm2·月)(mcm)的控制要求,系统结垢控制良好。
系统运行3年后在大检修期间打开110-E-150关键换热器进行检查,未见明显结垢和腐蚀迹象。
3.4微生物控制效果
微生物可在循环冷却水系统中大量繁殖,在有机类工艺介质泄漏的炼油循环水系统中尤为严重。因回用水存在微生物及有机碳源、氨氮等微生物营养源,以回用水作为补充用水的循环冷却水系统面临微生物滋生问题。因此无磷水处理方案需有效控制微生物的危害。
该循环水场日常运行时采用次氯酸钠和BULAB6158控制系统微生物,同时使用脂肪酸酰胺类为主复配的有机分散剂BULAB8012控制微生物黏泥及有机污垢。
循环水中以异养菌的生长繁殖最快,数量最多,因此常以异养菌数量代表水中全部细菌总数。监测2020年1~5月循环水中的异养菌总数,分别为2100、2500、2700、2300、2600 mL-1。可见异养菌总数满足<105 mL-1的控制要求,系统微生物问题控制良好。
3.5泄漏处置
2016年5月E1210贫吸收油换热器出现泄漏,大量油污、柴油泄漏进入循环水系统,循环水出现大量浮油,水体乳化严重;循环水中的CODCr、浊度最高达到1160 mg/L和600 NTU(见图 4),石油类物质最高达到26.9 mg/L(见图 5),严重危害各生产装置的安全运行。
图 4 循环水中CODCr、浊度的变化曲线
图 5 循环水中石油类变化曲线
通过采取人工打捞、置换,配合实施BULAB8012油污剥离应急处理方案,10 d内系统得到恢复,循环水中的CODCr<100 mg/L,浊度<20 NTU,循环水中的石油类物质降至5.0 mg/L以下。
水处理方案中的有机分散剂BULAB8012具有良好的油污剥离能力,用于该循环水场的泄露应急处理,能帮助快速恢复水系统。